1,565 research outputs found

    Anomaly Detection with Density Estimation

    Full text link
    We leverage recent breakthroughs in neural density estimation to propose a new unsupervised anomaly detection technique (ANODE). By estimating the probability density of the data in a signal region and in sidebands, and interpolating the latter into the signal region, a likelihood ratio of data vs. background can be constructed. This likelihood ratio is broadly sensitive to overdensities in the data that could be due to localized anomalies. In addition, a unique potential benefit of the ANODE method is that the background can be directly estimated using the learned densities. Finally, ANODE is robust against systematic differences between signal region and sidebands, giving it broader applicability than other methods. We demonstrate the power of this new approach using the LHC Olympics 2020 R\&D Dataset. We show how ANODE can enhance the significance of a dijet bump hunt by up to a factor of 7 with a 10\% accuracy on the background prediction. While the LHC is used as the recurring example, the methods developed here have a much broader applicability to anomaly detection in physics and beyond.Comment: 28 pages, 11 figures, v2: appendix on optimality, minor modifications, journal versio

    A unified approach to realize universal quantum gates in a coupled two-qubit system with fixed always-on coupling

    Full text link
    We demonstrate that in a coupled two-qubit system any single-qubit gate can be decomposed into two conditional two-qubit gates and that any conditional two-qubit gate can be implemented by a manipulation analogous to that used for a controlled two-qubit gate. Based on this we present a unified approach to implement universal single-qubit and two-qubit gates in a coupled two-qubit system with fixed always-on coupling. This approach requires neither supplementary circuit or additional physical qubits to control the coupling nor extra hardware to adjust the energy level structure. The feasibility of this approach is demonstrated by numerical simulation of single-qubit gates and creation of two-qubit Bell states in rf-driven inductively coupled two SQUID flux qubits with realistic device parameters and constant always-on coupling.Comment: 4 pages, 3 figure

    Simulation Assisted Likelihood-free Anomaly Detection

    Full text link
    Given the lack of evidence for new particle discoveries at the Large Hadron Collider (LHC), it is critical to broaden the search program. A variety of model-independent searches have been proposed, adding sensitivity to unexpected signals. There are generally two types of such searches: those that rely heavily on simulations and those that are entirely based on (unlabeled) data. This paper introduces a hybrid method that makes the best of both approaches. For potential signals that are resonant in one known feature, this new method first learns a parameterized reweighting function to morph a given simulation to match the data in sidebands. This function is then interpolated into the signal region and then the reweighted background-only simulation can be used for supervised learning as well as for background estimation. The background estimation from the reweighted simulation allows for non-trivial correlations between features used for classification and the resonant feature. A dijet search with jet substructure is used to illustrate the new method. Future applications of Simulation Assisted Likelihood-free Anomaly Detection (SALAD) include a variety of final states and potential combinations with other model-independent approaches.Comment: 19 pages, 9 figure

    Disentangling Boosted Higgs Boson Production Modes with Machine Learning

    Full text link
    Higgs Bosons produced via gluon-gluon fusion (ggF) with large transverse momentum (pTp_T) are sensitive probes of physics beyond the Standard Model. However, high pTp_T Higgs Boson production is contaminated by a diversity of production modes other than ggF: vector boson fusion, production of a Higgs boson in association with a vector boson, and production of a Higgs boson with a top-quark pair. Combining jet substructure and event information with modern machine learning, we demonstrate the ability to focus on particular production modes. These tools hold great discovery potential for boosted Higgs bosons produced via ggF and may also provide additional information about the Higgs Boson sector of the Standard Model in extreme phase space regions for other production modes as well.Comment: 17 pages, 9 figure

    ABCDisCo: Automating the ABCD Method with Machine Learning

    Full text link
    The ABCD method is one of the most widely used data-driven background estimation techniques in high energy physics. Cuts on two statistically-independent classifiers separate signal and background into four regions, so that background in the signal region can be estimated simply using the other three control regions. Typically, the independent classifiers are chosen "by hand" to be intuitive and physically motivated variables. Here, we explore the possibility of automating the design of one or both of these classifiers using machine learning. We show how to use state-of-the-art decorrelation methods to construct powerful yet independent discriminators. Along the way, we uncover a previously unappreciated aspect of the ABCD method: its accuracy hinges on having low signal contamination in control regions not just overall, but relative to the signal fraction in the signal region. We demonstrate the method with three examples: a simple model consisting of three-dimensional Gaussians; boosted hadronic top jet tagging; and a recasted search for paired dijet resonances. In all cases, automating the ABCD method with machine learning significantly improves performance in terms of ABCD closure, background rejection and signal contamination.Comment: 37 pages, 12 figure

    The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    Full text link
    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kahler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.Comment: 15 pages; minor correction

    Exploring the Universality of Hadronic Jet Classification

    Full text link
    The modeling of jet substructure significantly differs between Parton Shower Monte Carlo (PSMC) programs. Despite this, we observe that machine learning classifiers trained on different PSMCs learn nearly the same function. This means that when these classifiers are applied to the same PSMC for testing, they result in nearly the same performance. This classifier universality indicates that a machine learning model trained on one simulation and tested on another simulation (or data) will likely be optimal. Our observations are based on detailed studies of shallow and deep neural networks applied to simulated Lorentz boosted Higgs jet tagging at the LHC.Comment: 25 pages, 7 figures, 7 table

    Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection

    Full text link
    Anomaly detection techniques are growing in importance at the Large Hadron Collider (LHC), motivated by the increasing need to search for new physics in a model-agnostic way. In this work, we provide a detailed comparative study between a well-studied unsupervised method called the autoencoder (AE) and a weakly-supervised approach based on the Classification Without Labels (CWoLa) technique. We examine the ability of the two methods to identify a new physics signal at different cross sections in a fully hadronic resonance search. By construction, the AE classification performance is independent of the amount of injected signal. In contrast, the CWoLa performance improves with increasing signal abundance. When integrating these approaches with a complete background estimate, we find that the two methods have complementary sensitivity. In particular, CWoLa is effective at finding diverse and moderately rare signals while the AE can provide sensitivity to very rare signals, but only with certain topologies. We therefore demonstrate that both techniques are complementary and can be used together for anomaly detection at the LHC.Comment: 39 pages, 17 figure

    Distinguishing between fake news and satire with transformers

    Get PDF
    Indiscriminate elimination of harmful fake news risks destroying satirical news, which can be benign or even beneficial, because both types of news share highly similar textual cues. In this work we applied a recent development in neural network architecture, transformers, to the task of separating satirical news from fake news. Transformers have hitherto not been applied to this specific problem. Our evaluation results on a publicly available and carefully curated dataset show that the performance from a classifier framework built around a DistilBERT architecture performed better than existing machine-learning approaches. Additional improvement over baseline DistilBERT was achieved through the use of non-standard tokenization schemes as well as varying the pre-training and text pre-processing strategies. The improvement over existing approaches stands at 0.0429 (5.2%) in F1 and 0.0522 (6.4%) in accuracy. Further evaluation on two additional datasets shows our framework\u27s ability to generalize across datasets without diminished performance
    • …
    corecore